Effect of solid lubricant reinforcing on drilling performance of castamide and thermal analysis

Author:

Yarar Eser1ORCID,Sinmazçelik Tamer1

Affiliation:

1. Department of Mechanical Engineering Kocaeli University Kocaeli Turkey

Abstract

AbstractThis study addresses the pressing need for enhancing the machining performance and hole quality of castamide by investigating the effects of solid lubricant addition and drilling parameters. Castamide, a highly crystalline polyamide synthesized via anionic ring‐opening polymerization, offers superior mechanical, physical, and chemical properties compared to conventional polyamide 6. However, its machining process, particularly drilling, remains a critical challenge due to its viscoelastic nature and sensitivity to heat generation. Using experimental investigations, thrust forces, drilling temperatures, hole geometry, and quality parameters are systematically analyzed and discussed. Notably, the study introduces Kestlub, a modified version of castamide with solid lubricant, and evaluates its drilling performance, a previously unexplored area in the literature. The research employs response surface methodology to model experimental data, considering both linear and quadratic effects of drilling parameters. Additionally, the significance of each parameter is assessed using ANOVA tables and Pareto charts, offering valuable insights into optimizing the drilling process for enhanced hole quality in castamide. It found that optimal drilling conditions occur at low rotational speeds and high feed rates, but thermal damage, influenced by factors like thermal conductivity and transition temperature, affects hole geometry and burr formation.Highlights Drilling performances of solid lubricant reinforced castamides were investigated. Drilling temperatures were recorded with a thermal camera and differential scanning calorimeter and thermal gravimetric analyses were performed. Drilling properties were analyzed statistically according to the response surface method. It found that optimal drilling conditions occur at low rotational speeds and high feed rates.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3