Interaction of Mechanical Characteristics in Workpiece Subsurface Layers with Drilling Process Energy Characteristics

Author:

Storchak Michael12ORCID,Hlembotska Larysa2ORCID,Melnyk Oleksandr2,Baranivska Nataliia2ORCID

Affiliation:

1. Institute for Machine Tools, University of Stuttgart, Holzgartenstraße 17, 70174 Stuttgart, Germany

2. Department of Mechanical Engineering, Zhytomyr Polytechnic State University, Chudnivska str. 103, 10005 Zhytomyr, Ukraine

Abstract

The performance properties of various types of parts are predominantly determined by the subsurface layer forming methods of these parts. In this regard, cutting processes, which are the final stage in the manufacturing process of these parts and, of course, their subsurface layers, play a critical role in the formation of the performance properties of these parts. Such cutting processes undoubtedly include the drilling process, the effect of which on the mechanical characteristics of the drill holes subsurface layers is evaluated in this study. This effect was evaluated by analyzing the coincidence of the energy characteristics of the short hole drilling process with the mechanical characteristics of the drilled holes’ subsurface layers. The energy characteristics of the short-hole drilling process were the total drilling power and the cutting work in the tertiary cutting zone, which is predominantly responsible for the generation of mechanical characteristics in the subsurface layers. As mechanical characteristics of the drill holes’ subsurface layers were used, the microhardness of machined surfaces and total indenter penetration work determined by the instrumented nanoindentation method, as well as maximal indenter penetration depth, were determined by the sclerometry method. Through an analysis of the coincidence between the energy characteristics of the drilling process and the mechanical characteristics of the subsurface layers, patterns of the effect of drilling process modes, drill feed, and cutting speed, which essentially determine these energy characteristics, on the studied mechanical characteristics have been established. At the same time, the increase in the energy characteristics of the short-hole drilling process leads to a decrease in the total indenter penetration work and the maximum indenter penetration depth simultaneously with an increase in the microhardness of the drilled holes’ subsurface layers.

Funder

German Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3