Friction compensation using a double pulse method for a high-speed high-precision table

Author:

Chen G S1,Mei X S12,Tao T1

Affiliation:

1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China

2. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China

Abstract

Friction error in reverse motion is one of the principal factors influencing the contour accuracy of high-speed and high-precision computer numerical control (CNC) machine tools, on which closed-loop control is used. On the basis of transient response analysis of servo systems which a conventional proportion–integration–differentiation control strategy are used, the reason for quadrant protrusions occurring in circular motion for worktables is discovered, and the characteristics of the friction error during the feed process such as emergence time, duration, and magnitude of the error due to friction can be predicted correctly. A new approach of compensating for friction error using double compensation pulses is proposed in this article. The first compensation pulse made the worktable escape from the dead zone at the best times, and the second one made the worktable approach to the ideal feed path along the guide as fast as possible. Parameters of compensation pulses such as magnitudes, widths, and starting time are determined by simple mathematic calculation. Results of simulations and experiments show that the method using double pulses proposed in this article can effectively compensate for the friction error in circular motions for a high-speed and high-precision table.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3