Experimental Assessment of Effect of Backlash Control Parameters on Quadrant Protrusions of Circular Tests for CNC Machine Tools

Author:

Hsu Chuan-Hsun1,Wang Chi-Hsiang2,Yeh Syh-Shiuh3

Affiliation:

1. Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C.

2. Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C.

3. Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C.

Abstract

Backlash, friction, and servo lag factors often result in protrusion or segment difference phenomenon in the moving speed reversal of a machine tool’s moving table. This phenomenon can be improved by adjusting the backlash control parameters of the machine tool controller, but the control parameters must vary with the feed rate and payload of the moving table. Therefore, this study performed the circular test process for CNC machine tools, and used different feed rate, radius, and payload motion conditions to discuss the effect of backlash control parameters on quadrant protrusions. First, this study used parameter-range reduction combined with the Taguchi method and the binary search algorithm to search for the optimal backlash control parameters in the parameter setting range, so that the machine tool could have preferable quadrant protrusion performance when executing circular tests. Afterward, the correlation of the moving table feed rate, radius, and payload to the quadrant protrusion was analyzed according to the experimental results. The results indicated that the machine tool moving table feed rate had the most apparent effect on quadrant protrusions, and the relationship between the payload and quadrant protrusion was influenced by the moving table feed rate and circular radius simultaneously.

Funder

Ministry of Science and Technology, Taiwan, R.O.C.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3