Affiliation:
1. College of Intelligent Science, National University of Defense Technology, Changsha, China
Abstract
A variable-configuration wheeled driving system is proposed to improve the obstacle-crossing abilities of unmanned vehicles. The effects of the wheel load on the wheels’ obstacle-crossing abilities are analysed using statics theory. Similarly, the effects of the suspension’s stiffness and the adhesion coefficient on the vehicle’s obstacle-crossing ability are analysed. Numerical calculation results show that a higher wheel lift height leads to improved obstacle-crossing abilities. A strategy to adjust the system configuration during obstacle crossing is designed with the wheel lift height acting as the optimisation target. The variable-configuration strategy is verified and the optimal adjustment of the middle axle is determined through simulations. An obstacle-crossing experiment shows that a vehicle can cross a 1-m step obstacle when the proposed variable-configuration strategy is applied. The obstacle-crossing ability of the unmanned vehicle can thus be greatly enhanced.
Funder
Science Foundation for Young Scientists of Hunan province
National Natural Science Foundation of China
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献