Stiffness analysis of corrugated flexure beam using stiffness matrix method

Author:

Wang Nianfeng1,Zhang Zhiyuan1ORCID,Zhang Xianmin1

Affiliation:

1. Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

Abstract

Precision positioning techniques present a significant opportunity to support the instrumentation development for state-of-the-art micro-positioning research. The requirement of large stroke and high resolution of the mechanism without a need for amplifier mechanisms is universally recognized. Corrugated flexure beam can have some potential if designed right because of its large flexibility obtained from longer overall length on the same span. This paper presents stiffness analysis of corrugated flexure beam using stiffness or compliance matrix method. Based on Euler–Bernoulli beam theory and Mohr’s integral method, the deformation analyses of straight segment and semi-circle segment are presented. And the stiffness matrix of corrugated flexure unit is then obtained via transformation matrix. By combining the stiffness matrix of every single corrugated flexure unit, the stiffness matrix of corrugated flexure beam is delivered, which reflects the relationship between the load and displacement. The analytical models are verified by taking advantage of the finite element method, which shows that all the results can be of considerable use in the design of corrugated flexure beam.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3