Modeling and prototype experiment of a six-DOF parallel micro-manipulator with nano-scale accuracy

Author:

Dong Yi1,Gao Feng1,Yue Yi1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, P.R. China

Abstract

This paper presents a high-accurate micro-manipulator featured with monolithic compliant structure, orthogonally arranged parallel mechanism and piezoelectric (PZT) actuation. 6-SPS mechanism is employed to provide six degrees of freedom (DOF), including three linear translations and three rotations. The kinematics and stiffness of the micro-manipulator is studied first in this paper. Then, the relationship between PZT nominal displacement and the end pose is derived. Aiming at achieving trajectories with nano-scale accuracy, a two-step strategy is proposed. Finite element analysis (FEA) is conducted to verify the kinematics and stiffness model. Finally, in order to demonstrate the performance of the micro-manipulator, experiments of typical trajectories are carried out. The experimental result shows that the proposed micro-manipulator is capable of achieving trajectories with nano-scale accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3