Design and experimental evaluation of feedforward controller integrating filtered-x LMS algorithm with applications to electro-hydraulic force control systems

Author:

Tang Yu12,Zhu Zhencai12,Shen Gang12

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China

2. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, China

Abstract

The control purpose of an electro-hydraulic force control (EHFC) system is to real time replicate the force exerted on a structure in laboratory so as to simulate loads that cannot otherwise be generated naturally. In contrast to electro-hydraulic position control system, the tracking performance of EHFC system is always limited. To enhance the force replication accuracy of EHFC systems, a feedforward inverse controller integrating filtered-x LMS adaptive algorithm is presented in this paper. The proposed controller comprises a feedforward inverse controller and an adaptive controller. The feedforward inverse controller working as an inner loop is firstly established by directly cascading the designed parametric inverse transfer function to the EHFC system with proportional integral controller and the inverse transfer function is obtained with the implementation of system identification and zero magnitude error tracking technology. Then, the adaptive controller employing the filtered-x LMS algorithm acting as an outer loop is further combined with the feedforward controller to deal with the error occurred in the inverse model design procedure. Therefore, the proposed controller is an easy-to-implement strategy and can effectively enhance the force replication performance for both phase delay errors and amplitude mismatch errors. Finally, a series of experiments are carried out on a real EHFC test rig by means of xPC target technology, and the experimental results indicate that the proposed controller has a relatively better tracking accuracy compared with the proportional integral controller and the feedforward controller. It is also worth noting that the proposed controller can also be extended to other servo control systems where high accuracy tracking performance is required.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3