Affiliation:
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract
Hydraulic servo shaking table is an essential testing facility to simulate the actual vibration situation in real time. As a parallel mechanism, multiaxis hydraulic servo shaking table shows strong coupling characteristic among different degrees of freedom. When the multiaxis hydraulic shaking table moves to one direction, some unnecessary related motions will appear in other directions, which seriously affect the control performance. An effective approach to decouple motions in command direction and in unnecessary related directions is an urgent need for a higher precision control performance. In this work, the coupling phenomena and reasons of the multiaxis hydraulic servo table are analyzed based on dynamic model of a multiaxis hydraulic servo shaking table. In this regard, multiaxis hydraulic servo shaking table with strong coupling within the physical space is transformed into a set of single-input single-output systems that are independent of each other in the modal space. A decoupling control strategy is proposed in modal space to restrain the coupling motions. Simulation and experimental results show that the proposed control strategy can effectively improve the control performance and the decoupling effect.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献