Affiliation:
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, Liaoning, China
Abstract
In industrial production, the structures of hydraulic servo system-connecting device-load systems are often simplified as rigid connections for the ease of calculation. However, this simplification is problematic when applied to flexible connections in hydraulic systems, which generally have multivariable and strong couplings; these characteristics affect the control accuracy of the hydraulic servo system and lead to serious distortion of the output waveform, which cannot be ignored. These problems cause greater lag and attenuation of the actual signal than those of the expected signal, leading to lower credibility. Therefore, it is important to study the waveform distortion caused by flexible connections. In this paper, according to the characteristics of a flexible connection, a corresponding mathematical model is established, and an adaptive controller, whose structure is simple and calculation cost is low, is used to adjust the amplitude and phase of the response signal and improve the accuracy of the system response. Treating the change in the response signal as the error value, the algorithm weights are adjusted until the error value is stable. Then, a more accurate output signal is obtained. Finally, the validity and practicability of the adaptive controller are verified by simulation experiments.
Funder
National Science and Technology Major Project
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering