Control of shroud leakage flows to reduce mixing losses in a shrouded axial turbine

Author:

Gao J1,Zheng Q1,Yue G1,Sun L1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, People's Republic of China

Abstract

The losses caused by the leakage flows through the rotor tip clearance, and the mixing losses by the re-entering leakage into the main flow are considerable parts of the total losses in turbines. The main reason for the mixing losses is the different velocity components of main and leakage flows. This leads to shear stresses which cause increased turbulence and losses. This article presents a numerical investigation on three different configurations to control the leakage flows: (a) turning vanes are fixed onto the casing between the fins to turn the shroud leakage flow into the main flow direction in order to reduce the circumferential mixing losses; (b) honeycomb bands are inserted into the casing to weaken the leakage flow in the circumferential direction and reduce the circumferential mixing losses due to the special hexagon structure; and (c) downstream edge of the cavity is chamfered to reduce the radial velocity component of the leakage jet and the separation at the downstream edge, and also to reduce the streamwise mixing losses. A 1.5-stage axial turbine with high-aspect ratio blading was used in this study to investigate the sealing designs as mentioned. The flow simulation results of the three configurations were analysed and compared in this article.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3