Windage Torque Reduction in Low-Pressure Turbine Cavities Part II: Experimental and Numerical Results

Author:

Jackson Richard W.1,Li Zhihui2,Christodoulou Loizos2,Ambrose Stephen3,Sangan Carl M.1,Jefferson-Loveday Richard3,Lock Gary D.1,Scobie James A.1

Affiliation:

1. University of Bath Department of Mechanical Engineering, , Bath BA2 7AY , UK

2. University of Nottingham Gas Turbine and Transmissions, Research Centre (G2TRC), Faculty of Engineering, , Nottingham NG7 2TU , UK

3. University of Nottingham Gas Turbine and Transmissions Research Centre (G2TRC), Faculty of Engineering, , Nottingham NG7 2TU , UK

Abstract

Abstract Minimizing the losses within a low-pressure turbine (LPT) system is critical for the design of next-generation ultra-high bypass ratio aero-engines. The stator-well cavity windage torque can be a significant source of loss within the system, influenced by the ingestion of mainstream annulus air with a tangential velocity opposite to that of the rotor. This paper presents experimental and numerical results of three carefully designed Flow Control Concepts (FCCs)—additional geometric features on the stator surfaces, which were optimized to minimize the windage torque within a scaled, engine-representative stator-well cavity. FCC1 and FCC2 featured rows of guide vanes at the inlet to the downstream and upstream wheel-spaces, respectively. FCC3 combined FCC1 and FCC2. Superposed flows were introduced to the upstream section of the cavity, which modelled the low-radius coolant and higher radius leakage between the rotor blades. In addition to torque measurements, total and static pressures were collected, from which the cavity swirl ratio was derived. Additional swirl measurements were collected using a five-hole aerodynamic probe, which traversed radially at the entrance and exit of the cavity. A cavity windage torque reduction of 55% on the baseline (which has no flow control) was measured for FCC3, at the design condition with superposed flow. For this concept, an increase in the cavity swirl in both the upstream and downstream wheel-spaces was demonstrated experimentally and numerically. With increasing superposed flow, the contribution of FCC1 surpassed FCC2, due to more mass flow entering the downstream wheel-space across the rotor fins (passing FCC1), and less ingestion from the annulus into the upstream wheel-space (passing FCC2). The torque changes from the concepts are explained using the fluid dynamic evidence from experimental swirl measurements and computational simulations. The simulations allow translation to engine-operating conditions and practical information to the engine designer.

Funder

Cleansky

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3