Mode Inference using enhanced Segmentation and Pre-processing on raw Global Positioning System data

Author:

Nawaz Asif1ORCID,Zhiqiu Huang123,Senzhang Wang1,Hussain Yasir1,Naseer Amara1,Izhar Muhammad1,Khan Zaheer1

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, People’s Republic of China

2. Key Laboratory of Safety-Critical Software, NUAA, Ministry of Industry and Information Technology, Nanjing, People’s Republic of China

3. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, People’s Republic of China

Abstract

Many applications use the Global Positioning System data that provide rich context information for multiple purposes. Easier availability and access of Global Positioning System data can facilitate various mobile applications, and one of such applications is to infer the mobility of a user. Most existing works for inferring users’ transportation modes need the combination of Global Positioning System data and other types of data such as accelerometer and Global System for Mobile Communications. However, the dependency of the applications to use data sources other than the Global Positioning System makes the use of application difficult if peer data source is not available. In this paper, we introduce a new generic framework for the inference of transportation mode by only using the Global Positioning System data. Our contribution is threefold. First, we propose a new method for Global Positioning System trajectory data preprocessing using grid probability distribution function. Second, we introduce an algorithm for the change point–based trajectory segmentation, to more effectively identify the single-mode segments from Global Positioning System trajectories. Third, we introduce new statistical-based topographic features that are more discriminative for transportation mode detection. Through extensive evaluation on the large trajectory data GeoLife, our approach shows significant performance improvement in terms of accuracy over state-of-the-art baseline models.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3