Application of digital image processing technique in the microstructure analysis and the machinability investigation

Author:

Sheladiya ManojkumarORCID, ,Acharya ShaileeORCID,Kothari AshishORCID,Acharya GhanshyamORCID, , , ,

Abstract

Introduction. The world is at the stage of creating an interdisciplinary approach that will be implemented in metallurgical research. The paper formulates the technique of image analysis in the study of processing at different depths from the mold-metal interface. The purpose of the work. Processing of a cast-iron workpiece within the first 3.5 mm of thickness from the mold-metal interface is a serious problem of solid processing. The study of machinability at different depths is a key requirement of the industry for ease of processing. Machinability will determine a number of factors, including tool consumption, workpiece surface quality, energy consumption, etc. The method of investigation. Image analysis is performed to determine the percentage of graphite in etched and non-etched samples. K-means clustering allows to create a new image from a given one with a clear separation of white and black areas by converting a digital image into a binary image using a threshold value for segmentation. The volume fraction of perlite, the volume fraction of graphite and the average size of graphite flakes in microns are used as input variables for the machinability of cast iron. Results and discussion. The output, that is, the segmented image, will be the input function for calculating the workability index using formulas. Thus, microstructural analysis will help predict the workability index of grey cast iron ASTM A48 Class 20. Using this method and the program, based on the microstructure, it is possible to predict in advance the characteristics of the machining of the part, taking into account possible changes in the casting process itself.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3