Computing Urban Traffic Congestions by Incorporating Sparse GPS Probe Data and Social Media Data

Author:

Wang Senzhang1,Zhang Xiaoming2,Cao Jianping3,He Lifang4,Stenneth Leon5,Yu Philip S.6,Li Zhoujun2,Huang Zhiqiu7

Affiliation:

1. Nanjing University of Aeronautics and Astronautics; Collaboration Innovation Center of Novel Software Technology and Industrialization

2. Beihang University

3. National University of Defense Technology

4. Shenzhen University

5. BMW, Audia, and Daimler's HERE Connected Driving

6. University of Illinois at Chicago; Tsinghua University

7. Nanjing University of Aeronautics and Astronautics

Abstract

Estimating urban traffic conditions of an arterial network with GPS probe data is a practically important while substantially challenging problem, and has attracted increasing research interests recently. Although GPS probe data is becoming a ubiquitous data source for various traffic related applications currently, they are usually insufficient for fully estimating traffic conditions of a large arterial network due to the low sampling frequency. To explore other data sources for more effectively computing urban traffic conditions, we propose to collect various traffic events such as traffic accident and jam from social media as complementary information. In addition, to further explore other factors that might affect traffic conditions, we also extract rich auxiliary information including social events, road features, Point of Interest (POI), and weather. With the enriched traffic data and auxiliary information collected from different sources, we first study the traffic co-congestion pattern mining problem with the aim of discovering which road segments geographically close to each other are likely to co-occur traffic congestion. A search tree based approach is proposed to efficiently discover the co-congestion patterns. These patterns are then used to help estimate traffic congestions and detect anomalies in a transportation network. To fuse the multisourced data, we finally propose a coupled matrix and tensor factorization model named TCE_R to more accurately complete the sparse traffic congestion matrix by collaboratively factorizing it with other matrices and tensors formed by other data. We evaluate the proposed model on the arterial network of downtown Chicago with 1,257 road segments whose total length is nearly 700 miles. The results demonstrate the superior performance of TCE_R by comprehensive comparison with existing approaches.

Funder

National High-tech R8D Program of China

NSF

Beijing Advanced Innovation Center for Imaging Technology

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3