Affiliation:
1. Nanjing University of Aeronautics and Astronautics; Collaboration Innovation Center of Novel Software Technology and Industrialization
2. Beihang University
3. National University of Defense Technology
4. Shenzhen University
5. BMW, Audia, and Daimler's HERE Connected Driving
6. University of Illinois at Chicago; Tsinghua University
7. Nanjing University of Aeronautics and Astronautics
Abstract
Estimating urban traffic conditions of an arterial network with GPS probe data is a practically important while substantially challenging problem, and has attracted increasing research interests recently. Although GPS probe data is becoming a ubiquitous data source for various traffic related applications currently, they are usually insufficient for fully estimating traffic conditions of a large arterial network due to the low sampling frequency. To explore other data sources for more effectively computing urban traffic conditions, we propose to collect various traffic events such as traffic accident and jam from social media as complementary information. In addition, to further explore other factors that might affect traffic conditions, we also extract rich auxiliary information including social events, road features, Point of Interest (POI), and weather. With the enriched traffic data and auxiliary information collected from different sources, we first study the traffic co-congestion pattern mining problem with the aim of discovering which road segments geographically close to each other are likely to co-occur traffic congestion. A search tree based approach is proposed to efficiently discover the co-congestion patterns. These patterns are then used to help estimate traffic congestions and detect anomalies in a transportation network. To fuse the multisourced data, we finally propose a coupled matrix and tensor factorization model named TCE_R to more accurately complete the sparse traffic congestion matrix by collaboratively factorizing it with other matrices and tensors formed by other data. We evaluate the proposed model on the arterial network of downtown Chicago with 1,257 road segments whose total length is nearly 700 miles. The results demonstrate the superior performance of TCE_R by comprehensive comparison with existing approaches.
Funder
National High-tech R8D Program of China
NSF
Beijing Advanced Innovation Center for Imaging Technology
NSFC
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献