Affiliation:
1. College of Automation and Electronic Engineering, Qingdao University of Science & Technology, Qingdao, China
2. College of Information Science and Technology, Qingdao University of Science & Technology, Qingdao, China
Abstract
For accelerating the technology development and facilitating the reliable operation of lithium-ion batteries, accurate prediction for battery remaining useful life (RUL) are both critical. In this paper, a 1D CNN-BiLSTM method is proposed to extract the RUL prediction of lithium-ion battery of Electric Vehicles (EVs). By using one dimensional convolutional neural network (1D CNN) and bidirectional long short-term memory (BiLSTM) neural network simultaneously, selecting the ELU activation function to apply to the convolutional layer, a hybrid neural network is proposed to improve the accuracy and stability of lithium-ion battery RUL prediction. The 1D CNN is used to fully mine the deep features of lithium-ion SOH data, while the BiLSTM is adopted to study the deep features in two directions, and the RUL prediction of lithium-ion battery is output through dense layer. To verify the effectiveness of the proposed method, the battery data of the National Aeronautics and Space Administration (NASA) are utilized to make some comparisons among the RNN model, LSTM model, BiLSTM model and hybrid neural network model. The results show that the hybrid one has higher generalization ability and prediction accuracy than the others.
Funder
Key Research and Development Projects of Shandong Province
Shandong Graduate Education Quality Improvement Plan Project
Project of Shandong Province Higher Educational Science and Technology Program
National Natural Science Foundation of China
Subject
Applied Mathematics,Control and Optimization,Instrumentation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献