Distributed Regional Photovoltaic Power Prediction Based on Stack Integration Algorithm

Author:

Hu Keyong12ORCID,Lang Chunyuan1,Fu Zheyi1,Feng Yang12ORCID,Sun Shuifa12,Wang Ben12ORCID

Affiliation:

1. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China

2. Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China

Abstract

With the continuous increase in the proportion of distributed photovoltaic power stations, the demand for photovoltaic power grid connection is becoming more and more urgent, and the requirements for the accuracy of regional distributed photovoltaic power forecasting are also increasing. A distributed regional photovoltaic power prediction model based on a stacked ensemble algorithm is proposed here. This model first uses a graph attention network (GAT) to learn the structural features and relationships between sub-area photovoltaic power stations, dynamically calculating the attention weights of the photovoltaic power stations to capture the global relationships and importance between stations, and selects representative stations for each sub-area. Subsequently, the CNN-LSTM-multi-head attention parallel multi-channel (CNN-LSTM-MHA (PC)) model is used as the basic model to predict representative stations for sub-areas by integrating the advantages of both the CNN and LSTM models. The predicted results are then used as new features for the input data of the meta-model, which finally predicts the photovoltaic power of the large area. Through comparative experiments at different seasons and time scales, this distributed regional approach reduced the MAE metric by a total of 22.85 kW in spring, 17 kW in summer, 30.26 kW in autumn, and 50.62 kW in winter compared with other models.

Funder

the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3