Reliable and Robust Observer for Simultaneously Estimating State-of-Charge and State-of-Health of LiFePO4 Batteries

Author:

Al-Gabalawy Mostafa,Mahmoud KararORCID,Darwish Mohamed M.F.ORCID,Dawson James A.,Lehtonen MattiORCID,Hosny Nesreen S.

Abstract

Batteries are everywhere, in all forms of transportation, electronics, and constitute a method to store clean energy. Among the diverse types available, the lithium-iron-phosphate (LiFePO4) battery stands out for its common usage in many applications. For the battery’s safe operation, the state of charge (SOC) and state of health (SOH) estimations are essential. Therefore, a reliable and robust observer is proposed in this paper which could estimate the SOC and SOH of LiFePO4 batteries simultaneously with high accuracy rates. For this purpose, a battery model was developed by establishing an equivalent-circuit model with the ambient temperature and the current as inputs, while the measured output was adopted to be the voltage where current and terminal voltage sensors are utilized. Another vital contribution is formulating a comprehensive model that combines three parts: a thermal model, an electrical model, and an aging model. To ensure high accuracy rates of the proposed observer, we adopt the use of the dual extend Kalman filter (DEKF) for the SOC and SOH estimation of LiFePO4 batteries. To test the effectiveness of the proposed observer, various simulations and test cases were performed where the construction of the battery system and the simulation were done using MATLAB. The findings confirm that the best observer was a voltage-temperature (VT) observer, which could observe SOC accurately with great robustness, while an open-loop observer was used to observe the SOH. Furthermore, the robustness of the designed observer was proved by simulating ill-conditions that involve wrong initial estimates and wrong model parameters. The results demonstrate the reliability and robustness of the proposed observer for simultaneously estimating the SOC and SOH of LiFePO4 batteries.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3