Author:
Yin Aijun,Tan Zhibin,Tan Jian
Abstract
The state of health (SOH) prediction of lithium-ion batteries (LIBs) is of crucial importance for the normal operation of the battery system. In this paper, a new method for cycle life and full life cycle capacity prediction is proposed, which combines the early discharge characteristics with the neural Gaussian process (NGP) model. The cycle data sets of commercial LiFePO4(LFP)/graphite cells generated under different operating conditions are analyzed, and the power characteristic P is extracted from the voltage and current curves of the early cycles. A Pearson correlation analysis shows that there is a strong correlation between P and cycle life. Our model achieves 8.8% test error for predicting cycle life using degradation data for the 20th to 110th cycles. Based on the predicted cycle life, capacity degradation curves for the whole life cycle of the cells are predicted. In addition, the NGP method, combined with power characteristics, is compared with other classical methods for predicting the remaining useful life (RUL) of LIBs. The results demonstrate that the proposed prediction method of cycle life and capacity has better battery life and capacity prediction. This work highlights the use of early discharge characteristics to predict battery performance, and shows the application prospect in accelerating the development of electrode materials and optimizing battery management systems (BMS).
Funder
Key Science and Technology Research Project of Chongqing
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献