Optimal measurement area determination algorithm of articulated arm measuring machine based on improved FOA

Author:

Li Li1ORCID,Yang Hongtao1,Jiang Lei1,Gu Jiahui1,Zhang Yu1

Affiliation:

1. Anhui University of Science and Technology, Anhui, China

Abstract

The determination of the optimal measurement area of the articulated arm measuring machine belongs to the multi-dimensional function optimization problem under complex constraints. To realize high-precision measurement of low-precision articulated arm measuring machine, we analyze the working principle and error source of the measuring machine, and establish the optimization target model of the optimal measurement area in this paper. We propose a method for determining the optimal measurement area of an articulated arm measuring machine based on improved FOA. The basic FOA algorithm is improved, the historical optimal individual and population centroid information are added in the population iteration update process, and the fruit fly individuals in each iteration are directly used as the taste concentration judgment value, which increases cooperation and information sharing among fruit fly individuals, and improves the global optimization ability and stability of the algorithm. In the designated area of the measuring machine, we have carried out comparative experiments on the optimization results of improved FOA and basic FOA, ACO, PSO, AL-SC-FOA, LGMS-FOA, IPGS-FFO. Experimental results show that the improved FOA, ACO, PSO, and IPGS-FFO algorithms do not fall into local optimum, and the optimal measurement area determined by them is consistent with the optimization results of other algorithms, and is superior to other algorithms in convergence speed and stability, so it is more suitable for determining the optimal measurement area of articulated arm measuring machine.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3