Particle swarm algorithm-based identification method of optimal measurement area of coordinate measuring machine

Author:

Chen Hongfang1ORCID,Wu Huan1ORCID,Gao Yi1ORCID,Shi Zhaoyao1,Wen Zhongpu1,Liang Ziqi1ORCID

Affiliation:

1. Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing University of Technology , Beijing 100124, China

Abstract

A particle swarm algorithm-based identification method for the optimal measurement area of large coordinate measuring machines (CMMs) is proposed in this study to realize the intelligent identification of measurement objects and optimize the measurement position and measurement space using laser tracer multi-station technology. The volumetric error distribution of the planned measurement points in the CMM measurement space is obtained using laser tracer multi-station measurement technology. The volumetric error of the specified step distance measurement points is obtained using the inverse distance weighting (IDW) interpolation algorithm. The quasi-rigid body model of the CMM is solved using the LASSO algorithm to obtain the geometric error of the measurement points in a specified step. A model of individual geometric errors is fitted with least squares. An error optimization model for the measurement points in the CMM space is established. The particle swarm optimization algorithm is employed to optimize the model, and the optimal measurement area of the CMM airspace is determined. The experimental results indicate that, when the measurement space is optimized based on the volume of the object being measured, with dimensions of (35 × 35 × 35) mm3, the optimal measurement area for the CMM, as identified by the particle swarm algorithm, lies within the range of 150 mm < X < 500 mm, 350 mm < Y < 700 mm, and −430 mm < Z < −220 mm. In particular, the optimal measurement area is defined as 280 mm < X < 315 mm, 540 mm < Y < 575 mm, and −400 mm < Z < −365 mm. Comparative experiments utilizing a high-precision standard sphere with a diameter of 19.0049 mm and a sphericity of 50 nm demonstrate that the identified optimal measurement area is consistent with the results obtained through the particle swarm algorithm, thereby validating the correctness of the method proposed in this study.

Funder

National Natural Science Foundation of China

National Major Scientific Research Instrument Development Project Under Grant

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3