Fast error calibration of Flexible Measuring Arm based on an adaptive Genetic Algorithm

Author:

Zhao Xinhua123,Wang Jiahao3,Zhao Lei123ORCID,Li Bin123,Zhou Haibo123

Affiliation:

1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China

3. School of Mechanic Engineering, Tianjin University of Technology, Tianjin, China

Abstract

With the development of measurement technology, the Flexible Measuring Arm (FMA) is widely used in quality test of automobile processing and industrial production. FMA is a kind of nonlinear system with many parameters. Low cost and efficient calibration method have become the focuses of attention. This article presents a fast calibration method for FMA based on an adaptive Genetic Algorithm (GA) just with several standard balls and a ball plate. It can greatly reduce the calibration cost than common external calibration method which needs high precision instruments and sensors. Firstly, the kinematic model of FMA is established by RPY theory. Secondly, the common GA is optimized and improved, and an adaptive mechanism is added to the algorithms which can realize the automatic adjustment of crossover and mutation operators. A Normalized Genetic Algorithm (NGA) with adaptive mechanism is proposed to complete the optimization calculation. It can improve the numbers of optimal individuals and the convergence speed. So, the search efficiency will be enhanced greatly. Finally, the Least square method (LSM), the General Genetic Algorithm (GGA), and the proposed NGA are respectively used to finish the calibration work. The compensation accuracy and the search efficiency with the above three different algorithms have been systematically analyzed. Experiment indicates that the performance of NGA is much better than LSM and GGA. The data also has proved that the LSM is suitable to complete optimization calculation for linear system. Its convergence stability is much poorer than NGA and GGA because of the ill-condition Jacobin matrix. GGA is easy to fall into local optimization because of the fixed operators. The proposed NGA obviously owns fast convergence speed, high accuracy and better stability than GGA. The position error is reduced from 3.17 to 0.5 mm after compensation with the proposed NGA. Its convergence rate is almost two time of GGA which applies constant genetic factors. The effectiveness and feasibility of proposed method are verified by experiment.

Funder

national outstanding youth science fund project of national natural science foundation of china

key technologies research and development program

science fund for distinguished young scholars of tianjin

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3