Optimization and selection of Galileo triple-frequency carrier linear combination

Author:

Wang Jun1ORCID,Dong Xurong1,Fu Wei2,Yan Di3,Shi Zengkai1

Affiliation:

1. School of Space Information, Space Engineering University, Beijing, China

2. Unit 32039, Beijing, China

3. Beijing Institute of Remote Sensing Information, Beijing, China

Abstract

The triple-frequency linear combination with a low noise, a long wavelength, and a weak ionosphere is beneficial to effectively eliminate or weaken the common errors, advance the reliability of cycle slip detection and repair, and speed up the convergence time of fixed ambiguity. By establishing the Galileo triple-frequency carrier linear combination model, three types of linear combinations are derived: Geometry-free (GF) combinations, minimum noise (MN) combinations, and ionosphere-free (IF) combinations. The geometric relationships of these linear combinations are displayed in the form of image. The results indicate that the angle formed by the IF combinations and the MN combinations is between 75.02° and 86.01°, which also illustrates that it is more difficult to meet the carrier phase combinations with a low noise and a weak ionosphere. Moreover, to guarantee the integer cycle characteristics of ambiguity, the combination coefficient must be an integer. Galileo triple-frequency linear combination is solved utilizing the extremum method. To sum up, the sum of the coefficients of the extra wide lane (EWL) combinations and wide lane (WL) combinations is zero, and the sum of the coefficients of the narrow lane (NL) combinations is one. (0, 1, −1) is the optimal triple-frequency linear combination in Galileo. Three independent linear combinations are selected separately from the EWL, WL, and NL to jointly solve the integer ambiguity. Further, it creates a prerequisite for high-precision and real-time kinematic positioning.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3