A point cloud registration algorithm based on normal vector and particle swarm optimization

Author:

Zhan Xu12,Cai Yong1,Li Heng3,Li Yangmin4,He Ping53ORCID

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang, People’s Republic of China

2. Department of Automation, Sichuan University of Science & Engineering, Yibin, People’s Republic of China

3. Department of Building and Real Estate, The Hong Kong Polytechnic University, Kowloon, Hong Kong

4. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

5. School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai, People’s Republic of China

Abstract

Based on normal vector and particle swarm optimization (NVP), a point cloud registration algorithm is proposed by searching the corresponding points. It provides a new method for point cloud registration using feature point registration. First, in order to find the nearest eight neighbor nodes, the k-d tree is employed to build the relationship between points. Then, the normal vector and the distance between the point and the center gravity of eight neighbor points can be calculated. Second, the particle swarm optimization is used to search the corresponding points. There are two conditions to terminate the search in particle swarm optimization: one is that the normal vector of node in the original point cloud is the most similar to that in the target point cloud, and the other is that the distance between the point and the center gravity of eight neighbor points of node is the most similar to that in the target point cloud. Third, after obtaining the corresponding points, they are tested by random sample consensus in order to obtain the right corresponding points. Fourth, the right corresponding points are registered by the quaternion method. The experiments demonstrate that this algorithm is effective. Even in the case of point cloud data lost, it also has high registration accuracy.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3