Fast Extraction Algorithm of Planar Targets Based on Point Cloud Data for Monitoring the Synchronization of Bridge Jacking Displacements

Author:

Liang DongORCID,Zhang ZeyuORCID,Zhang Qiang,Wu Erpeng,Huang Haibin

Abstract

Transverse synchronization of vertical displacements of all jacking‐up points is an important monitoring indicator to replace bearings in assembled multigirder bridges during the jacking phase. Currently, using target paper to identify the 3D coordinates of control points reduces the complexity of monitoring operations and improves the stability of data precision. However, the existing planar target locating methods have low accuracy, inefficiency, and subjectivity, which seriously hinders the construction process of bearing replacement. Accurately obtaining the center coordinates of multiple targets from a point cloud in a short monitoring period remains a challenge. This study proposes a high‐precision automated algorithm to extract target center points in low‐density point clouds to quickly calculate real target center points. First, we construct a standard point cloud model of the target papers for scanning, including color and geometric features. Then, we extract the measured point cloud of the typical jacking operation phase based on the reflection intensity and size information. Next, we map the intensity values of the measured point cloud into the color channel and register the measured point cloud with its standard point cloud model using the normal vector estimation and colored ICP algorithms. Finally, we extract the center point of the measured targets. Numerical experiments and engineering test results show that the proposed method converges quickly with high precision and good robustness, which saves 91.4% of the time compared with the traditional method. In general, this research can provide effective technical support for 3D laser scanning in monitoring the operation phase of bridge jacking.

Funder

National Natural Science Foundation of China

Tianjin Municipal Transportation Commission Science and Technology Development Plan Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3