Genetic Algorithm-based thermal uniformity–aware X-filling to reduce peak temperature during testing

Author:

Azhaganantham Arulmurugan1,Govindasamy Murugesan1

Affiliation:

1. Department of Electronics and Communication Engineering (ECE), Kongu Engineering College, Perundurai, India

Abstract

High temperature occurs in testing of complex System-on-Chip designs and it may become a critical concern to be carefully taken into account with continual development in Very Large Scale Integration technology. Peak temperature significantly affects the reliability and the performance of the chip. So it is essential to minimize the peak temperature of the chip. Heat generation by power consumption and heat dissipation to the surrounding blocks are the two prominent factors for the peak temperature. Power consumption can be minimized by a careful mapping of don’t cares in precomputed test set. However, it does not provide the solution to peak temperature minimization because the non-uniformity in spatial power distribution may create localized heating event called “hotspot.” The peak temperature on the hotspot is minimized by Genetic Algorithm–based don’t care filling technique that reduces the non-uniformity in spatial power distribution within the circuit under test while maintaining the overall power consumption at a lower level. Experimental results on ISCAS89 benchmark circuits demonstrate that 6%–28% peak temperature reduction can be achieved.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3