Fuzzy predictive Stanley lateral controller with adaptive prediction horizon

Author:

Abdelmoniem Ahmed1,Ali Abdullah1,Taher Youssef1,Abdelaziz Mohamed2,Maged Shady A1ORCID

Affiliation:

1. Mechatronics Engineering Department, Ain Shams University, Cairo, Egypt

2. Automotive Engineering Department, Ain Shams University, Cairo, Egypt

Abstract

The challenge of trajectory tracking of autonomous vehicles (AVs) is a critical aspect that must be effectively addressed. Recent studies are concerned with maintaining the yaw stability to guarantee the customers’ comfort throughout the journey. Most of the geometrical controllers solve this task by dividing it into consecutive point stabilization problems, limiting the controllers’ ability to handle sudden trajectory changes. One research presented a predictive Stanley lateral controller that uses a discrete prediction model to mimic human behavior by anticipating the vehicle’s future states. That controller is limited in its use, as the parameters must be manually tuned for every change in the maneuver or vehicle velocity. This article presents a novel approach for trajectory tracking in autonomous vehicles, by introducing a fuzzy supervisory controller that automatically adapts to changes in the vehicle’s velocity and maneuver by estimating the prediction horizon’s length and providing different weights for each controller. The proposed method overcomes the limitations of traditional controllers that require manual tuning of parameters, making it ready for real-world experiments. This is the main contribution of the research in this paper. The suggested technique demonstrated an advantage over the Basic Stanley controller and the manually tuned predictive Stanley controller in terms of the total lateral error and the model predictive control (MPC) in terms of computational time. The performance is determined by performing various simulations on V-Rep and hardware-in-the-loop (HIL) experiments on an E-CAR golf bus. A broad selection of velocities is used to validate the behavior of the vehicle while working on different maneuvers (double lane change, hook road, S road, and curved road).

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3