Comparison of dynamic sorption and hygroexpansion of wood by different cyclic hygrothermal changing effects II

Author:

Yang Tiantian1,Wang Jiamin1,Sheng Nan1,Ma Erni2

Affiliation:

1. MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China

2. China-ASEAN Environmental Cooperation Center, Beijing, China

Abstract

Dynamic wood sorption and hygroexpansion by different cyclic hygrothermal changing effects were investigated. Poplar ( populus euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were subjected to three rounds under control of these two factors. In the first round, relative humidity changed sinusoidally between 75% and 45% with temperature constant at 20°C. In the second round, temperature changed sinusoidally between 5°C and 35°C with relative humidity constant at 60%. In the third round, relative humidity changed sinusoidally between 75% and 45%, simultaneously temperature changed between 5°C and 35°C. In each round, three sinusoidal change cyclic periods were operated: 1, 6, and 24 h. The measurement of moisture and dimensional responses showed the following results: (1) moisture and dimensional changes were both presented generally in sinusoidal mode. Their amplitudes were lower for thicker specimens exposed to shorter cyclic period. (2) Comparing with the effect brought by changing a single parameter, that is, changing relative humidity or temperature alone, changing relative humidity and temperature together brought greater impact on the specimens. Under a typical air-dry condition at 20°C and 60% relative humidity, this comparison was more obvious, especially for dimensional changes. (3) When the amplitudes resulted in changing relative humidity and changing temperature were superposed, its value was higher than which brought by changing relative humidity and temperature together with the maximum ratio of 1.48. (4) Moisture-content change (ΔMC) and variation of T-dimensional change (ΔT) were all linearly correlated with treating time. Less time was needed to reach a given ΔMC or ΔT, namely, larger ΔMC or ΔT could be attained within the same time by changing relative humidity and temperature together, where the greatest average rate of wood sorption and hygroexpansion could be observed. All these results indicated that in practice, sinusoidally controlling the changes in relative humidity and temperature together was most efficient to adjust the moisture content and deformation in wood processing and application.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3