The role of water in the behavior of wood

Author:

Derome Dominique1,Rafsanjani Ahmad12,Hering Stefan3,Dressler Martin12,Patera Alessandra12,Lanvermann Christian4,Sedighi-Gilani Marjan1,Wittel Falk K3,Niemz Peter4,Carmeliet Jan15

Affiliation:

1. Laboratory for Building Science and Technology, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf, Switzerland

2. Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland

3. Institute for Building Materials, ETH Zürich, Zürich, Switzerland

4. Wood Physics Group, Institute for Building Materials, ETH Zürich, Zürich, Switzerland

5. Chair of Building Physics, ETH Zürich, Zürich, Switzerland

Abstract

Wood, due to its biological origin, has the capacity to interact with water. Sorption/desorption of moisture is accompanied with swelling/shrinkage and softening/hardening of its stiffness. The correct prediction of the behavior of wood components undergoing environmental loading requires that the moisture behavior and mechanical behavior of wood are considered in a coupled manner. We propose a comprehensive framework using a fully coupled poromechanical approach, where its multiscale implementation provides the capacity to take into account, directly, the exact geometry of the wood cellular structure, using computational homogenization. A hierarchical model is used to take into account the subcellular composite-like organization of the material. Such advanced modeling requires high-resolution experimental data for the appropriate determination of inputs and for its validation. High-resolution x-ray tomography, digital image correlation, and neutron imaging are presented as valuable methods to provide the required information.

Publisher

SAGE Publications

Subject

General Materials Science,Building and Construction

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3