Effects of spacing on flaming and smoldering firebrands in wildland–urban interface fires

Author:

Kwon Byoungchul1,Liao Ya-Ting T1ORCID

Affiliation:

1. Department of Mechanical & Aerospace Engineering, CaseWestern Reserve University, Cleveland, OH, USA

Abstract

Firebrand (ember) attack has been shown to be one of the key mechanisms of wildfire spread into wildland–urban interface communities. After the firebrands land on a substrate material, the ignition propensity of the material depends on not only the attributes (e.g. shape, size, and numbers) but also the distribution of the firebrands. To help characterize this process, this study aims to investigate the effects of gap spacing on the burning behaviors of a group of wooden samples. Experiments are conducted using nine wooden cubes, 19 mm on each side. These samples are arranged in a 3 × 3 square pattern on suspension wires and are ignited by hot coils from the bottom surface. The gap spacing (s) between the samples varies in each test (ranging from 0 to 30 mm). After ignition, the samples are left to burn to completion. The burning process is recorded using video cameras. Sample mass loss and temperatures are monitored during the flaming and smoldering processes. The results show that the flame height and the sample mass loss rate have non-monotonic dependencies on the gap spacing. When the gap spacing reduces, the flame height and the mass loss rate first increase due to enhanced heat input from the adjacent flames to each sample. When s ≤ 10 mm, flames from individual samples are observed to merge into a single large fire. As s further decreases, the air entrainment at the flame bottom decreases and the flame lift-off distance at the flame center increases, resulting in an increased flame height, decreased flame heat feedback to the solid samples, and a decreased mass loss rate. The decreased mass loss rate eventually leads to a decrease in the flame height as well. The gaseous flame height is correlated to the solid burning rate. The correlation generally follows previous empirical equations for continuous fire sources. For the smoldering combustion, compared to a single burning sample, the smoldering temperature and duration significantly increase due to the thermal interactions between adjacent burning samples. To help interpret the results of the burning experiments, thermogravimetric analysis is also performed in air and nitrogen, resulting in heating rates ranging from 10 to 100 K/min.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference49 articles.

1. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California

2. National Oceanic and Atmospheric Administration (NOAA), National Centers for Environmental Information. State of the climate: global climate report for annual 2020, https://www.ncdc.noaa.gov/sotc/global/202013

3. CAL FIRE. Top 20 largest California wildfires, https://www.fire.ca.gov/stats-events/

4. A Case Study of the Camp Fire – Fire Progression Timeline

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3