The world is burning: What exactly are firebrands and why should anyone care?

Author:

Manzello Samuel L.,Suzuki Sayaka

Abstract

Large outdoor fires have become commonplace all over the world. The International Organization for Standardization (ISO) defines large outdoor fires as an urban fire, tsunami-generated fire, volcano-generated fire, wildland-urban interface (WUI) fire, wildland fire, or informal settlement fire, where the total burnout area is significant. Perhaps of all the large outdoor fires, it is wildland fires that spread into urban areas, simply called WUI fires that attract the most attention. A glance at the recent headlines in the summer of 2022 reveals numerous catastrophic WUI fires all over Europe. Across the Atlantic Ocean in the USA, there is yet another destructive WUI fire raging in the USA state of California. With the increasing risks from a changing climate, these large outdoor fire disasters are only going to become more and more commonplace all over the world. More homes will be lost and more lives will be lost. It is the authors opinion that a targeted, multi-disciplinary approach is needed to address the large outdoor fire problem. In this short, invited paper to Horizons in Mechanical Engineering, it is argued that large outdoor fire problem is a fascinating and challenging research area and that engineers have the necessary skills and training to impact a problem that influences millions upon millions of people all over the world. An important danger, present in all large outdoor fires, are firebrands. Firebrands are introduced for non-specialist readers, and the most recent literature is reviewed. Several challenges are discussed, in particular, areas where engineers may help move the needle forward on this globally important topic.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference98 articles.

1. Impact of anthropogenic climate change on wildfire across western US forests;Abatzoglou;Proc. Natl. Acad. Sci. U. S. A.,2016

2. Firebrand generation rates at the source for trees and a shrub;Adusumilli;Front. Mech. Eng.,2021

3. EU gets landmark deal to phase out combustion engine by 2035, bloomberg, june 29, 2022, EU countries uphold cars emissions phaseout in end to combustion engine - bloomberg AingerJ. KrukowskaE. 2022

4. Characterization of firebrands released from different burning tree species;Almeida;Front. Mech. Eng.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3