Affiliation:
1. Department of Automobile Roads, Tomsk State University of Architecture and Building, 634003 Tomsk, Russia
2. Department of Physical and Computational Mechanics, Tomsk State University, 634050 Tomsk, Russia
Abstract
In this study, a theoretical formulation of the ignition and combustion of the wood layer by burning and smoldering firebrands has been considered. The effect of the firebrands’ length, distances between firebrands and their geometrical parameters on the heat exchange with the wood layer and the ignition process were analyzed. With a decrease in firebrand size, ignition of wood is possible with a decrease in the distance between the firebrands. With an increase in firebrand size at the same distance between them, the ignition regime becomes possible albeit with a longer delay time Δt. With a decrease in the distance between the firebrands, the ignition of wood is possible with an increase in Δt. As a result of mathematical modeling of the process, the following processes are noted: the heat stored in firebrands of small sizes is insufficient to initiate the ignition process; the temperature in the wood layer, due to conductive heat exchange, slightly increases at first, before beginning to decrease as a result of heat exchange with the surrounding air and the wood layer; intensive heat exchange with the environment of small size firebrands leads to the end of firebrand smoldering and its cooling; and, if the firebrand size reaches a critical value, then the pyrolysis process begins in the area adjacent to it.
Funder
Russian Science Foundation
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献