Atmospheric turbulent structures and fire sweeps during shrub fires and implications for flaming zone behaviour

Author:

Katurji Marwan,Noonan Bob,Zhang JiaweiORCID,Valencia Andres,Shumacher BenjaminORCID,Kerr Jessica,Strand Tara,Pearce GrantORCID,Zawar-Reza Peyman

Abstract

Background Wildfires propagate through vegetation exhibiting complex spread patterns modulated by ambient atmospheric wind turbulence. Wind gusts at the fire-front extend and intensify flames causing direct convective heating towards unburnt fuels resulting in rapid acceleration of spread. Aims To characterise ambient and fire turbulence over gorse shrub and explore how this contributes to fire behaviour. Methods Six experimental burns were carried out in Rakaia, New Zealand under varying meteorological conditions. The ignition process ensured a fire-line propagating through dense gorse bush (1 m high). Two 30-m sonic anemometer towers measured turbulent wind velocity at six different levels above the ground. Visible imagery was captured by cameras mounted on uncrewed aerial vehicles at 200 m AGL. Key results Using wavelet decomposition, we identified different turbulent time scales that varied between 1 and 128 s relative to height above vegetation. Quadrant analysis identified statistical distributions of atmospheric sweeps (downbursts of turbulence towards vegetation) with sustained events emanating from above the vegetation canopy and impinging at the surface with time scales up to 10 s. Conclusions Image velocimetry enabled tracking of ‘fire sweeps’ and characterised for the first time their lifetime and dynamics in comparison with overlying atmospheric turbulent structures. Implications This methodology can provide a comprehensive toolkit when investigating coupled atmosphere–fire interactions.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the atmospheric conditions increasing fire danger in the Iberian Peninsula;Quarterly Journal of the Royal Meteorological Society;2024-06-03

2. The 1986 Annaburroo experimental grassland fires: data;International Journal of Wildland Fire;2024-05-13

3. Surface-layer turbulence associated with a fast spreading grass fire;Agricultural and Forest Meteorology;2024-05

4. Investigating Fire–Atmosphere Interaction in a Forest Canopy Using Wavelets;Boundary-Layer Meteorology;2024-04-18

5. Effect of a Model Fire on Atmospheric Turbulence Characteristics;Atmospheric and Oceanic Optics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3