Affiliation:
1. Leg Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Abstract
Virtual model control is a motion control framework that uses virtual components to create virtual forces generated when the virtual components interact with a robot system. An algorithm derived based on the virtual model control framework is applied to a physical planar bipedal robot. It uses a simple set of virtual components that allows the robot to walk successfully over level terrain. This paper also describes how the algorithm can be augmented for rough terrain walking based on geometric consideration. The resulting algorithm is very simple and does not require the biped to have an extensive sensory system. The robot does not know the slope gradients and transition locations in advance. The ground is detected using foot contact switches. Using the algorithm, we have successfully compelled a simulated seven-link planar biped to walk blindly up and down slopes and over rolling terrain.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
324 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献