Affiliation:
1. CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/RL, Tsukuba, Japan
Abstract
This paper presents a novel unified theoretical framework for differential kinematics and dynamics for the optimization of complex robot motion. By introducing an 18×18 comprehensive motion transformation matrix, the forward differential kinematics and dynamics, including velocity and acceleration, can be written in a simple chain product similar to an ordinary rotational matrix. This formulation enables the analytical computation of derivatives of various physical quantities (e.g. link velocities, link accelerations, or joint torques) with respect to joint coordinates, velocities and accelerations for a robot trajectory in an efficient manner ([Formula: see text], where [Formula: see text] is the number of the robot’s degree of freedom), which is useful for motion optimization. Practical implementation of gradient computation is demonstrated together with simulation results of robot motion optimization to validate the effectiveness of the proposed framework.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献