Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems

Author:

Ayusawa Ko1,Venture Gentiane2,Nakamura Yoshihiko1

Affiliation:

1. Department of Mechano-Informatics, The University of Tokyo, Tokyo, Japan

2. Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract

In this paper we study the dynamics of multibody systems with the base not permanently fixed to the inertial frame, or more specifically legged systems such as humanoid robots and humans. The issue is to be approached in terms of the identification theory developed in the field of robotics. The under-actuated base-link which characterizes the dynamics of legged systems is the focus of this work. The useful mechanical feature to analyze the dynamics of legged system is proven: the set of inertial parameters appearing in the equation of motion of the under-actuated base is equivalent to the set in the equations of the whole body. In particular, when no external force acts on the system, all of the parameters in the set except the total mass are generally identifiable only from the observation of the free-flying motion. We also propose a method to identify the inertial parameters based on the dynamics of the under-actuated base. The method does not require the measurement of the joint torques. Neither the joint frictions nor the actuator dynamics need to be considered. Even when the system has no external reaction force, the method is still applicable. The method has been tested on both a humanoid robot and a human, and the experimental results are shown.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3