Robotic catheter cardiac ablation combining ultrasound guidance and force control

Author:

Kesner Samuel B.1,Howe Robert D.1

Affiliation:

1. Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA

Abstract

Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper addresses these challenges by proposing and implementing a robotic catheter system that uses 3D ultrasound image guidance and force control to enable constant contact with a moving target surface in order to perform interventional procedures, such as intracardiac tissue ablation. The robotic catheter system, consisting of a catheter module, ablation and force sensing end effector, drive system, and image-guidance and control system, was commanded to apply a constant force against a moving target using a position-modulated force control method. The control system uses a combination of position tracking, force feedback, and friction and backlash compensation to achieve accurate and safe catheter–tissue interactions. The catheter was able to maintain a 1 N force on a moving motion simulator target under ultrasound guidance with 0.08 N RMS error. In a simulated ablation experiment, the robotic catheter was also able to apply a consistent force on the target while maintaining ablation electrode contact with 97% less RMS contact resistance variation than a passive mechanical equivalent. In addition, the use of force control improved catheter motion tracking by approximately 20%. These results demonstrate that 3D ultrasound guidance and force tracking allow the robotic system to maintain improved contact with a moving tissue structure, thus allowing for more accurate and repeatable cardiac procedures.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3