Affiliation:
1. Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
2. University of Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Abstract
The central challenge in robotic mapping is obtaining reliable data associations (or “loop closures”): state-of-the-art inference algorithms can fail catastrophically if even one erroneous loop closure is incorporated into the map. Consequently, much work has been done to push error rates closer to zero. However, a long-lived or multi-robot system will still encounter errors, leading to system failure. We propose a fundamentally different approach: allow richer error models that allow the probability of a failure to be explicitly modeled. In other words, rather than characterizing loop closures as being “right” or “wrong”, we propose characterizing the error of those loop closures in a more expressive manner that can account for their non-Gaussian behavior. Our approach leads to an fully integrated Bayesian framework for dealing with error-prone data. Unlike earlier multiple-hypothesis approaches, our approach avoids exponential memory complexity and is fast enough for real-time performance. We show that the proposed method not only allows loop closing errors to be automatically identified, but also that in extreme cases, the “front-end” loop-validation systems can be unnecessary. We demonstrate our system both on standard benchmarks and on the real-world data sets that motivated this work.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献