Group-k consistent measurement set maximization via maximum clique over k-uniform hypergraphs for robust multi-robot map merging

Author:

Forsgren Brendon1ORCID,Kaess Michael2,Vasudevan Ram3,McLain Timothy W.1,Mangelson Joshua G.4

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA

2. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

4. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA

Abstract

This paper unifies the theory of consistent-set maximization for robust outlier detection in a simultaneous localization and mapping framework. We first describe the notion of pairwise consistency before discussing how a consistency graph can be formed by evaluating pairs of measurements for consistency. Finding the largest set of consistent measurements is transformed into an instance of the maximum clique problem and can be solved relatively quickly using existing maximum-clique solvers. We then generalize our algorithm to check consistency on a group- k basis by using a generalized notion of consistency and using generalized graphs. We also present modified maximum clique algorithms that function over generalized graphs to find the set of measurements that is internally group- k consistent. We address the exponential nature of group- k consistency and present methods that can substantially decrease the number of necessary checks performed when evaluating consistency. We extend our prior work to perform data association, and to multi-agent systems in both simulation and hardware, and provide a comparison with other state-of-the-art methods.

Funder

Center for Autonomous Air Mobility and Sensing

Office of Naval Research Global

NAVSEA Panama City NEEC

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3