The Null-Space-based Behavioral Control for Mobile Robots with Velocity Actuator Saturations

Author:

Arrichiello Filippo1,Chiaverini Stefano1,Indiveri Giovanni2,Pedone Paola2

Affiliation:

1. Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale, Università degli Studi di Cassino, Via G. Di Biasio 43, 03043 Cassino (FR), Italy,

2. Dipartimento Ingegneria dell'Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy,

Abstract

In this paper we present the application of the Null-Space-based Behavioral (NSB) approach to the motion control of mobile robots with velocity saturated actuators. The NSB is a behavior-based robot control approach that uses a hierarchical organization of the tasks to guarantee that they are executed according to a desired priority: it uses a projection technique to avoid that, in the absence of actuator saturations, low-priority tasks could influence higher-priority tasks. The main contribution of this paper is the extension of the NSB approach to the case where actuator velocity saturation bounds are explicitly taken into account. The proposed solution dynamically scales task velocity commands so that the hierarchy of task priorities is preserved in spite of actuator velocity saturations. The approach has been validated on two specific case studies. In the first case, the NSB elaborates the motion directives for a single mobile robot that has to reach a target while avoiding a point obstacle1 in this case, the mission is composed of two tasks. In the second case, the NSB elaborates the motion directives for a team of six mobile robots that has orates the motion directives for a team of six mobile robots that has to entrap and escort a target1 in this case the mission is composed of four tasks. The approach is validated by numerical simulations and by experiments with real mobile robots.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3