Adaptive Distributed Control for Leader–Follower Formation Based on a Recurrent SAC Algorithm

Author:

Li Mingfei1ORCID,Liu Haibin1ORCID,Xie Feng1,Huang He1

Affiliation:

1. College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

This study proposes a novel adaptive distributed recurrent SAC (Soft Actor–Critic) control method to address the leader–follower formation control problem of omnidirectional mobile robots. Our method successfully eliminates the reliance on the complete state of the leader and achieves the task of formation solely using the pose between robots. Moreover, we develop a novel recurrent SAC reinforcement learning framework that ensures that the controller exhibits good transient and steady-state characteristics to achieve outstanding control performance. We also present an episode-based memory replay buffer and sampling approaches, along with a unique normalized reward function, which expedites the recurrent SAC reinforcement learning formation framework to converge rapidly and receive consistent incentives across various leader–follower tasks. This facilitates better learning and adaptation to the formation task requirements in different scenarios. Furthermore, to bolster the generalization capability of our method, we normalized the state space, effectively eliminating differences between formation tasks of different shapes. Different shapes of leader–follower formation experiments in the Gazebo simulator achieve excellent results, validating the efficacy of our method. Comparative experiments with traditional PID and common network controllers demonstrate that our method achieves faster convergence and greater robustness. These simulation results provide strong support for our study and demonstrate the potential and reliability of our method in solving real-world problems.

Funder

National Key Research and Development Program of China

Research Funds for Leading Talents Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3