Research on double‐USVs fuzzy‐priority NSB behavior fusion formation control method for oil spill recovery

Author:

Chen Congcong12,Liao Yulei13,Tang Xiaoyu13,Sun Jiaqi13,Gu Junlin13,Li Haohan13,Ren Zijia13,Zhai Zizheng13,Li Ye13,Wang Bo13ORCID,Pang Shuo4

Affiliation:

1. National Key Laboratory of Autonomous Marine Vehicle Technology Harbin Engineering University Harbin China

2. School of Automation Southeast University Nanjing China

3. Sanya Nanhai Innovation and Development Base of Harbin Engineering University Sanya China

4. College of Engineering Embry‐Riddle Aeronautical University Daytona Beach Florida USA

Abstract

AbstractReplacing manned ships with unmanned surface vehicle (USV) for oil spill containment can reduce the consumption of manpower and resources. This article studies the formation control method of dual USVs during the process of capturing oil spill, based on the engineering background of towing oil boom by dual USVs oil spill recovery system. To calculate the drag force of the oil boom acting on the USV, the shape of the oil boom is simplified into a catenary, the oil boom is modeled, and the hydrodynamic numerical simulation is carried out. To address the issue of “winding” phenomenon and “towing separation,” the formation behavior is designed when double USVs are towing oil fences to capture oil spill. In response to the problem of low task execution efficiency caused by fixed behavior priority in traditional null‐space‐based (NSB) behavior fusion methods, a fuzzy‐priority NSB (FNSB) behavior fusion formation method is proposed by combining fuzzy control with NSB behavior fusion method. In the FNSB behavior fusion formation control method, a smooth transition rule is introduced to make the behavior priority change, USVs can still maintain good formation performance, ensuring the smooth execution of oil spill recovery tasks. Simulation shows that FNSB behavior fusion formation method based on flexible transition rules can improve the rounding efficiency by 26.6% in the environment without obstacles and 37.2% in the environment with multiple obstacles compared with the NSB method. The effectiveness and practicality of this method have been verified through simulation experiments and field experiments on the “Dolphin” series of small USVs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3