Design and implementation of an underactuated gripper with enhanced shape adaptability and lateral stiffness through semi-active multi-degree-of-freedom endoskeletons

Author:

Cui Yafeng123ORCID,An Xin123,Lin Zhonghan123,Guo Zhibin1,Liu Xin-Jun123,Zhao Huichan123ORCID

Affiliation:

1. Department of Mechanical Engineering, Tsinghua University, Beijing, China

2. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China

3. Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing, China

Abstract

Grasping is a key task for robots to interact with humans and the environment. Soft grippers have been widely studied and some have been applied in industry and daily life. Typical soft grippers face two challenges: lack of stiffness and insufficient adaptability to various objects. Inspired by the human hand, this paper proposes a soft-rigid hybrid pneumatic gripper composed of fingers with soft skin and rigid endoskeletons, and an active palm. Through different combinations of the four joints’ locking states within the rigid endoskeleton, each finger obtains 9 different postures in its inflating state and 13 different postures in its deflating state, endowing the gripper with the capability of adapting to a wider variety of objects. Simultaneously, due to the endoskeletons, the lateral stiffness of the gripper is significantly enhanced (load-to-weight ratio∼7.5 for lateral grasping). We also propose a series of grasping strategies for grasping objects with different sizes and shapes to utilize the versatile configurations of the gripper. Experiments demonstrated that the gripper conformed well to the surfaces of cylindrical and prismatic objects and successfully grasped all tool items and shape items in the Yale–CMU–Berkeley object set.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3