Affiliation:
1. Department of Computer Science, University of Freiburg, Germany
Abstract
Terrain classification is a critical component of any autonomous mobile robot system operating in unknown real-world environments. Over the years, several proprioceptive terrain classification techniques have been introduced to increase robustness or act as a fallback for traditional vision based approaches. However, they lack widespread adaptation due to various factors that include inadequate accuracy, robustness and slow run-times. In this paper, we use vehicle-terrain interaction sounds as a proprioceptive modality and propose a deep long-short term memory based recurrent model that captures both the spatial and temporal dynamics of such a problem, thereby overcoming these past limitations. Our model consists of a new convolution neural network architecture that learns deep spatial features, complemented with long-short term memory units that learn complex temporal dynamics. Experiments on two extensive datasets collected with different microphones on various indoor and outdoor terrains demonstrate state-of-the-art performance compared to existing techniques. We additionally evaluate the performance in adverse acoustic conditions with high-ambient noise and propose a noise-aware training scheme that enables learning of more generalizable models that are essential for robust real-world deployments.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献