Kinematic Dexterity of Robotic Mechanisms

Author:

Park Frank C.1,Brockett Roger W.2

Affiliation:

1. Mechanical and Aerospace Engineering University of California, Irvine Irvine, California 92717

2. Division of Applied Sciences Harvard University Cambridge, Massachusetts 02138

Abstract

In this article we develop a mathematical theory for optimizing the kinematic dexterity of robotic mechanisms and obtain a collection of analytical tools for robot design. The performance criteria we consider are workspace volume and dexterity; by the latter we mean the ability to move and apply forces in arbitrary directions as easily as possible. Clearly, dexterity and workspace volume are intrinsic to a mechanism, so that any mathematical formulation of these properties must necessarily be independent of the particular coordinate representation of the kinematics. By regarding the forward kinematics of a mechanism as defining a mapping between Riemannian manifolds, we apply the coordinate-free language of differential geometry to define natural measures of kinematic dexterity and workspace volume. This approach takes into account the geometric and topolog ical structures of the joint and workspaces. We show that the functional associated with harmonic mapping theory provides a natural measure of the kinematic dexterity of a mechan ism. Optimal designs among the basic classes of mechanisms are determined as extrema of this measure. We also examine the qualitative connections between kinematic dexterity and workspace volume.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3