Active collision avoidance for teleoperated multi-segment continuum robots toward minimally invasive surgery

Author:

Li Jianhua1234ORCID,Li Dingjia1234,Wang Chongyang123,Guo Wei5,Wang Zhidong6,Zhang Zhongtao5,Liu Hao123

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China

3. Key Laboratory of Minimally Invasive Surgical Robot of Liaoning Province, Shenyang, China

4. University of Chinese Academy of Sciences, Beijing, China

5. Beijing Friendship Hospital, Capital Medical University, Beijing, China

6. Chiba Institute of Technology, Narashino, Japan

Abstract

Collision avoidance presents a challenging problem for multi-segment continuum robots owing to their flexible structure, limited workspaces, and restricted visual feedback, particularly when they are used in teleoperated minimally invasive surgery. This study proposes a comprehensive control framework that allows these continuum robots to automatically avoid collision and self-collision without interfering with the surgeon’s control of the end effector’s movement. The framework implements the early detection of collisions and active avoidance strategies by expressing the body geometry of the multi-segment continuum robot and the differential kinematics of any cross-section using screw theory. With the robot’s parameterized shape and selected checkpoints on the obstacle’s surface, we can determine the minimum distance between the robot and arbitrary obstacle, and locate the nearest point on the robot. Furthermore, we expand the null-space-based control method to accommodate redundant, non-redundant, and multiple continuum robots. An assessment of the avoidance capability is provided through an instantaneous and global criterion based on ellipsoids and possible movement ranges. Simulations and physical experiments involving continuum robots of different degrees of freedom performing various tasks were conducted to thoroughly validate the proposed framework. The results demonstrated its feasibility and effectiveness in minimizing the risk of collisions while maintaining the surgeon’s control over the end effector.

Funder

Science and Technology Program Project of Liaoning Province

CAS Interdisciplinary Project

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3