Transfer force perception skills to robot‐assisted laminectomy via imitation learning from human demonstrations

Author:

Li Meng12,Qi Xiaozhi3ORCID,Han Xiaoguang4,Hu Ying3,Li Bing1,Zhao Yu5,Zhang Jianwei6

Affiliation:

1. Harbin Institute of Technology Shenzhen China

2. Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

3. Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

4. Beijing Jishuitan Hospital Capital Medical University Beijing China

5. Department of Orthopedics Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

6. University of Hamburg Hamburg 22527 Germany

Abstract

AbstractA comparative study of two force perception skill learning approaches for robot‐assisted spinal surgery, the impedance model method and the imitation learning (IL) method, is presented. The impedance model method develops separate models for the surgeon and patient, incorporating spring‐damper and bone‐grinding models. Expert surgeons' feature parameters are collected and mapped using support vector regression and image navigation techniques. The imitation learning approach utilises long short‐term memory networks (LSTM) and addresses accurate data labelling challenges with custom models. Experimental results demonstrate skill recognition rates of 63.61%–74.62% for the impedance model approach, relying on manual feature extraction. Conversely, the imitation learning approach achieves a force perception recognition rate of 91.06%, outperforming the impedance model on curved bone surfaces. The findings demonstrate the potential of imitation learning to enhance skill acquisition in robot‐assisted spinal surgery by eliminating the laborious process of manual feature extraction.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3