Stiffness modelling and analysis of soft fluidic-driven robots using Lie theory

Author:

Shi Jialei1ORCID,Shariati Azadeh1,Abad Sara-Adela12ORCID,Liu Yuanchang1,Dai Jian S34,Wurdemann Helge A1ORCID

Affiliation:

1. Department of Mechanical Engineering, University College London, London, UK

2. Institute for Applied Sustainability Research, Quito, Ecuador

3. Institute for Robotics, Southern University of Science and Technology, Shenzhen, China

4. Centre for Robotics Research, Department of Engineering, King’s College London, London, UK

Abstract

Soft robots have been investigated for various applications due to their inherently superior deformability and flexibility compared to rigid-link robots. However, these robots struggle to perform tasks that require on-demand stiffness, that is, exerting sufficient forces within allowable deflection. In addition, the soft and compliant materials also introduce large deformation and non-negligible nonlinearity, which makes the stiffness analysis and modelling of soft robots fundamentally challenging. This paper proposes a modelling framework to investigate the underlying stiffness and the equivalent compliance properties of soft robots under different configurations. Firstly, a modelling and analysis methodology is described based on Lie theory. Here, we derive two sets (the piecewise constant curvature and Cosserat rod model) of compliance models. Furthermore, the methodology can accommodate the nonlinear responses (e.g., bending angles) resulting from elongation of robots. Using this proposed methodology, the general Cartesian stiffness or compliance matrix can be derived and used for configuration-dependent stiffness analysis. The proposed framework is then instantiated and implemented on fluidic-driven soft continuum robots. The efficacy and modelling accuracy of the proposed methodology are validated using both simulations and experiments.

Funder

Engineering and Physical Sciences Research Council

The Springboard Award of the Academy of Medical Sciences

Royal Academy of Engineering

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3