Affiliation:
1. Department of Computer Science & Engineering, University of Washington, USA
2. Intel Labs Seattle, USA
Abstract
Recognizing and manipulating objects is an important task for mobile robots performing useful services in everyday environments. While existing techniques for object recognition related to manipulation provide very good results even for noisy and incomplete data, they are typically trained using data generated in an offline process. As a result, they do not enable a robot to acquire new object models as it operates in an environment. In this paper we develop an approach to building 3D models of unknown objects based on a depth camera observing the robot’s hand while moving an object. The approach integrates both shape and appearance information into an articulated Iterative Closest Point approach to track the robot’s manipulator and the object. Objects are modeled by sets of surfels, which are small patches providing occlusion and appearance information. Experiments show that our approach provides very good 3D models even when the object is highly symmetric and lacks visual features and the manipulator motion is noisy. Autonomous object modeling represents a step toward improved semantic understanding, which will eventually enable robots to reason about their environments in terms of objects and their relations rather than through raw sensor data.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献