Closed-Loop Behavior of a Feedback-Controlled Flexible Arm: A Comparative Study

Author:

Cetinkunt Sabri1,Yu Wen-Lung1

Affiliation:

1. Department of Mechanical Engineering University of Illinois at Chicago Chicago, Illinois 60680

Abstract

The dynamics of mechanical systems with distributed flexi bility are described by infinite-dimensional mathematical models. In order to design afinite-dimensional controller, a finite-dimensional model of the system is needed. The con trol problem of a flexible beam is a typical example. The general practice in obtaining a finite-dimensional model is to use modal approximation for distributed flexibility, retain a finite number of modes, and truncate the rest. In this approx imation, the appropriate selection of the mode shape func tions and the number of modes is not clearly known. Mostly standard pinned-free and clamped-free mode shapes are used for the flexible beam model, retaining only two or three modes and truncating the rest. The actual system, on the other hand, is infinite-dimensional, and the modes describing its flexible behavior under feedback control would be neither pinned-free nor clamped-free boundary condition modes. Rather, the mode shapes themselves are a function of the feedback control. The infinite-dimensional transcendental transfer functions for a flexible beam are formulated without any modal ap proximation. Finite-dimensional transfer functions with different shapes and numbers of modes are formulated. The closed-loop performance predictions of different models under the same colocated and noncolocated controllers, which attempt to achieve high closed-loop bandwidth, are compared. Results are surprisingly consistent in all cases; the predictions of clamped-free mode shape models are much more accurate than the predictions of the pinned-free mode shape models.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3