Affiliation:
1. Department of Mechanical Engineering University of Illinois at Chicago Chicago, Illinois 60680
Abstract
The dynamics of mechanical systems with distributed flexi bility are described by infinite-dimensional mathematical models. In order to design afinite-dimensional controller, a finite-dimensional model of the system is needed. The con trol problem of a flexible beam is a typical example. The general practice in obtaining a finite-dimensional model is to use modal approximation for distributed flexibility, retain a finite number of modes, and truncate the rest. In this approx imation, the appropriate selection of the mode shape func tions and the number of modes is not clearly known. Mostly standard pinned-free and clamped-free mode shapes are used for the flexible beam model, retaining only two or three modes and truncating the rest. The actual system, on the other hand, is infinite-dimensional, and the modes describing its flexible behavior under feedback control would be neither pinned-free nor clamped-free boundary condition modes. Rather, the mode shapes themselves are a function of the feedback control. The infinite-dimensional transcendental transfer functions for a flexible beam are formulated without any modal ap proximation. Finite-dimensional transfer functions with different shapes and numbers of modes are formulated. The closed-loop performance predictions of different models under the same colocated and noncolocated controllers, which attempt to achieve high closed-loop bandwidth, are compared. Results are surprisingly consistent in all cases; the predictions of clamped-free mode shape models are much more accurate than the predictions of the pinned-free mode shape models.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献